Copied to
clipboard

G = C5×C23.19D4order 320 = 26·5

Direct product of C5 and C23.19D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C23.19D4, C2.D87C10, C22⋊C87C10, C4.Q810C10, C4⋊D4.7C10, (C2×C20).461D4, D4⋊C413C10, C23.18(C5×D4), C42⋊C25C10, (C22×C10).36D4, C10.128(C4○D8), C20.319(C4○D4), (C2×C20).938C23, (C2×C40).306C22, C22.103(D4×C10), C10.143(C8⋊C22), (D4×C10).197C22, (C22×C20).430C22, C10.97(C22.D4), (C5×C4.Q8)⋊25C2, (C5×C2.D8)⋊22C2, C2.15(C5×C4○D8), C4.31(C5×C4○D4), C4⋊C4.59(C2×C10), (C5×C22⋊C8)⋊24C2, (C2×C8).43(C2×C10), (C2×C4).107(C5×D4), C2.18(C5×C8⋊C22), (C5×D4⋊C4)⋊31C2, (C2×D4).20(C2×C10), (C2×C10).659(C2×D4), (C5×C4⋊D4).17C2, (C5×C42⋊C2)⋊26C2, (C5×C4⋊C4).382C22, (C22×C4).48(C2×C10), (C2×C4).113(C22×C10), C2.13(C5×C22.D4), SmallGroup(320,983)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C5×C23.19D4
C1C2C4C2×C4C2×C20D4×C10C5×C4⋊D4 — C5×C23.19D4
C1C2C2×C4 — C5×C23.19D4
C1C2×C10C22×C20 — C5×C23.19D4

Generators and relations for C5×C23.19D4
 G = < a,b,c,d,e,f | a5=b2=c2=d2=f2=1, e4=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=cde3 >

Subgroups: 210 in 106 conjugacy classes, 50 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×D4, C20, C20, C2×C10, C2×C10, C22⋊C8, D4⋊C4, C4.Q8, C2.D8, C42⋊C2, C4⋊D4, C40, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C23.19D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C22×C20, D4×C10, D4×C10, C5×C22⋊C8, C5×D4⋊C4, C5×C4.Q8, C5×C2.D8, C5×C42⋊C2, C5×C4⋊D4, C5×C23.19D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C22.D4, C4○D8, C8⋊C22, C5×D4, C22×C10, C23.19D4, D4×C10, C5×C4○D4, C5×C22.D4, C5×C4○D8, C5×C8⋊C22, C5×C23.19D4

Smallest permutation representation of C5×C23.19D4
On 160 points
Generators in S160
(1 58 24 50 16)(2 59 17 51 9)(3 60 18 52 10)(4 61 19 53 11)(5 62 20 54 12)(6 63 21 55 13)(7 64 22 56 14)(8 57 23 49 15)(25 85 75 33 67)(26 86 76 34 68)(27 87 77 35 69)(28 88 78 36 70)(29 81 79 37 71)(30 82 80 38 72)(31 83 73 39 65)(32 84 74 40 66)(41 156 118 148 110)(42 157 119 149 111)(43 158 120 150 112)(44 159 113 151 105)(45 160 114 152 106)(46 153 115 145 107)(47 154 116 146 108)(48 155 117 147 109)(89 123 142 104 134)(90 124 143 97 135)(91 125 144 98 136)(92 126 137 99 129)(93 127 138 100 130)(94 128 139 101 131)(95 121 140 102 132)(96 122 141 103 133)
(1 129)(2 106)(3 131)(4 108)(5 133)(6 110)(7 135)(8 112)(9 152)(10 101)(11 146)(12 103)(13 148)(14 97)(15 150)(16 99)(17 160)(18 128)(19 154)(20 122)(21 156)(22 124)(23 158)(24 126)(25 111)(26 136)(27 105)(28 130)(29 107)(30 132)(31 109)(32 134)(33 119)(34 144)(35 113)(36 138)(37 115)(38 140)(39 117)(40 142)(41 63)(42 85)(43 57)(44 87)(45 59)(46 81)(47 61)(48 83)(49 120)(50 137)(51 114)(52 139)(53 116)(54 141)(55 118)(56 143)(58 92)(60 94)(62 96)(64 90)(65 147)(66 104)(67 149)(68 98)(69 151)(70 100)(71 145)(72 102)(73 155)(74 123)(75 157)(76 125)(77 159)(78 127)(79 153)(80 121)(82 95)(84 89)(86 91)(88 93)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 70)(10 71)(11 72)(12 65)(13 66)(14 67)(15 68)(16 69)(17 78)(18 79)(19 80)(20 73)(21 74)(22 75)(23 76)(24 77)(33 56)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(57 86)(58 87)(59 88)(60 81)(61 82)(62 83)(63 84)(64 85)(97 149)(98 150)(99 151)(100 152)(101 145)(102 146)(103 147)(104 148)(105 129)(106 130)(107 131)(108 132)(109 133)(110 134)(111 135)(112 136)(113 137)(114 138)(115 139)(116 140)(117 141)(118 142)(119 143)(120 144)(121 154)(122 155)(123 156)(124 157)(125 158)(126 159)(127 160)(128 153)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(2 26)(3 7)(4 32)(6 30)(8 28)(9 68)(10 14)(11 66)(13 72)(15 70)(17 76)(18 22)(19 74)(21 80)(23 78)(25 29)(33 37)(34 51)(36 49)(38 55)(40 53)(41 43)(42 90)(44 96)(45 47)(46 94)(48 92)(52 56)(57 88)(59 86)(60 64)(61 84)(63 82)(67 71)(75 79)(81 85)(89 91)(93 95)(97 149)(98 104)(99 147)(100 102)(101 145)(103 151)(105 133)(106 108)(107 131)(109 129)(110 112)(111 135)(113 141)(114 116)(115 139)(117 137)(118 120)(119 143)(121 127)(122 159)(123 125)(124 157)(126 155)(128 153)(130 132)(134 136)(138 140)(142 144)(146 152)(148 150)(154 160)(156 158)

G:=sub<Sym(160)| (1,58,24,50,16)(2,59,17,51,9)(3,60,18,52,10)(4,61,19,53,11)(5,62,20,54,12)(6,63,21,55,13)(7,64,22,56,14)(8,57,23,49,15)(25,85,75,33,67)(26,86,76,34,68)(27,87,77,35,69)(28,88,78,36,70)(29,81,79,37,71)(30,82,80,38,72)(31,83,73,39,65)(32,84,74,40,66)(41,156,118,148,110)(42,157,119,149,111)(43,158,120,150,112)(44,159,113,151,105)(45,160,114,152,106)(46,153,115,145,107)(47,154,116,146,108)(48,155,117,147,109)(89,123,142,104,134)(90,124,143,97,135)(91,125,144,98,136)(92,126,137,99,129)(93,127,138,100,130)(94,128,139,101,131)(95,121,140,102,132)(96,122,141,103,133), (1,129)(2,106)(3,131)(4,108)(5,133)(6,110)(7,135)(8,112)(9,152)(10,101)(11,146)(12,103)(13,148)(14,97)(15,150)(16,99)(17,160)(18,128)(19,154)(20,122)(21,156)(22,124)(23,158)(24,126)(25,111)(26,136)(27,105)(28,130)(29,107)(30,132)(31,109)(32,134)(33,119)(34,144)(35,113)(36,138)(37,115)(38,140)(39,117)(40,142)(41,63)(42,85)(43,57)(44,87)(45,59)(46,81)(47,61)(48,83)(49,120)(50,137)(51,114)(52,139)(53,116)(54,141)(55,118)(56,143)(58,92)(60,94)(62,96)(64,90)(65,147)(66,104)(67,149)(68,98)(69,151)(70,100)(71,145)(72,102)(73,155)(74,123)(75,157)(76,125)(77,159)(78,127)(79,153)(80,121)(82,95)(84,89)(86,91)(88,93), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,70)(10,71)(11,72)(12,65)(13,66)(14,67)(15,68)(16,69)(17,78)(18,79)(19,80)(20,73)(21,74)(22,75)(23,76)(24,77)(33,56)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(57,86)(58,87)(59,88)(60,81)(61,82)(62,83)(63,84)(64,85)(97,149)(98,150)(99,151)(100,152)(101,145)(102,146)(103,147)(104,148)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,137)(114,138)(115,139)(116,140)(117,141)(118,142)(119,143)(120,144)(121,154)(122,155)(123,156)(124,157)(125,158)(126,159)(127,160)(128,153), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (2,26)(3,7)(4,32)(6,30)(8,28)(9,68)(10,14)(11,66)(13,72)(15,70)(17,76)(18,22)(19,74)(21,80)(23,78)(25,29)(33,37)(34,51)(36,49)(38,55)(40,53)(41,43)(42,90)(44,96)(45,47)(46,94)(48,92)(52,56)(57,88)(59,86)(60,64)(61,84)(63,82)(67,71)(75,79)(81,85)(89,91)(93,95)(97,149)(98,104)(99,147)(100,102)(101,145)(103,151)(105,133)(106,108)(107,131)(109,129)(110,112)(111,135)(113,141)(114,116)(115,139)(117,137)(118,120)(119,143)(121,127)(122,159)(123,125)(124,157)(126,155)(128,153)(130,132)(134,136)(138,140)(142,144)(146,152)(148,150)(154,160)(156,158)>;

G:=Group( (1,58,24,50,16)(2,59,17,51,9)(3,60,18,52,10)(4,61,19,53,11)(5,62,20,54,12)(6,63,21,55,13)(7,64,22,56,14)(8,57,23,49,15)(25,85,75,33,67)(26,86,76,34,68)(27,87,77,35,69)(28,88,78,36,70)(29,81,79,37,71)(30,82,80,38,72)(31,83,73,39,65)(32,84,74,40,66)(41,156,118,148,110)(42,157,119,149,111)(43,158,120,150,112)(44,159,113,151,105)(45,160,114,152,106)(46,153,115,145,107)(47,154,116,146,108)(48,155,117,147,109)(89,123,142,104,134)(90,124,143,97,135)(91,125,144,98,136)(92,126,137,99,129)(93,127,138,100,130)(94,128,139,101,131)(95,121,140,102,132)(96,122,141,103,133), (1,129)(2,106)(3,131)(4,108)(5,133)(6,110)(7,135)(8,112)(9,152)(10,101)(11,146)(12,103)(13,148)(14,97)(15,150)(16,99)(17,160)(18,128)(19,154)(20,122)(21,156)(22,124)(23,158)(24,126)(25,111)(26,136)(27,105)(28,130)(29,107)(30,132)(31,109)(32,134)(33,119)(34,144)(35,113)(36,138)(37,115)(38,140)(39,117)(40,142)(41,63)(42,85)(43,57)(44,87)(45,59)(46,81)(47,61)(48,83)(49,120)(50,137)(51,114)(52,139)(53,116)(54,141)(55,118)(56,143)(58,92)(60,94)(62,96)(64,90)(65,147)(66,104)(67,149)(68,98)(69,151)(70,100)(71,145)(72,102)(73,155)(74,123)(75,157)(76,125)(77,159)(78,127)(79,153)(80,121)(82,95)(84,89)(86,91)(88,93), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,70)(10,71)(11,72)(12,65)(13,66)(14,67)(15,68)(16,69)(17,78)(18,79)(19,80)(20,73)(21,74)(22,75)(23,76)(24,77)(33,56)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(57,86)(58,87)(59,88)(60,81)(61,82)(62,83)(63,84)(64,85)(97,149)(98,150)(99,151)(100,152)(101,145)(102,146)(103,147)(104,148)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,137)(114,138)(115,139)(116,140)(117,141)(118,142)(119,143)(120,144)(121,154)(122,155)(123,156)(124,157)(125,158)(126,159)(127,160)(128,153), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (2,26)(3,7)(4,32)(6,30)(8,28)(9,68)(10,14)(11,66)(13,72)(15,70)(17,76)(18,22)(19,74)(21,80)(23,78)(25,29)(33,37)(34,51)(36,49)(38,55)(40,53)(41,43)(42,90)(44,96)(45,47)(46,94)(48,92)(52,56)(57,88)(59,86)(60,64)(61,84)(63,82)(67,71)(75,79)(81,85)(89,91)(93,95)(97,149)(98,104)(99,147)(100,102)(101,145)(103,151)(105,133)(106,108)(107,131)(109,129)(110,112)(111,135)(113,141)(114,116)(115,139)(117,137)(118,120)(119,143)(121,127)(122,159)(123,125)(124,157)(126,155)(128,153)(130,132)(134,136)(138,140)(142,144)(146,152)(148,150)(154,160)(156,158) );

G=PermutationGroup([[(1,58,24,50,16),(2,59,17,51,9),(3,60,18,52,10),(4,61,19,53,11),(5,62,20,54,12),(6,63,21,55,13),(7,64,22,56,14),(8,57,23,49,15),(25,85,75,33,67),(26,86,76,34,68),(27,87,77,35,69),(28,88,78,36,70),(29,81,79,37,71),(30,82,80,38,72),(31,83,73,39,65),(32,84,74,40,66),(41,156,118,148,110),(42,157,119,149,111),(43,158,120,150,112),(44,159,113,151,105),(45,160,114,152,106),(46,153,115,145,107),(47,154,116,146,108),(48,155,117,147,109),(89,123,142,104,134),(90,124,143,97,135),(91,125,144,98,136),(92,126,137,99,129),(93,127,138,100,130),(94,128,139,101,131),(95,121,140,102,132),(96,122,141,103,133)], [(1,129),(2,106),(3,131),(4,108),(5,133),(6,110),(7,135),(8,112),(9,152),(10,101),(11,146),(12,103),(13,148),(14,97),(15,150),(16,99),(17,160),(18,128),(19,154),(20,122),(21,156),(22,124),(23,158),(24,126),(25,111),(26,136),(27,105),(28,130),(29,107),(30,132),(31,109),(32,134),(33,119),(34,144),(35,113),(36,138),(37,115),(38,140),(39,117),(40,142),(41,63),(42,85),(43,57),(44,87),(45,59),(46,81),(47,61),(48,83),(49,120),(50,137),(51,114),(52,139),(53,116),(54,141),(55,118),(56,143),(58,92),(60,94),(62,96),(64,90),(65,147),(66,104),(67,149),(68,98),(69,151),(70,100),(71,145),(72,102),(73,155),(74,123),(75,157),(76,125),(77,159),(78,127),(79,153),(80,121),(82,95),(84,89),(86,91),(88,93)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,70),(10,71),(11,72),(12,65),(13,66),(14,67),(15,68),(16,69),(17,78),(18,79),(19,80),(20,73),(21,74),(22,75),(23,76),(24,77),(33,56),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(57,86),(58,87),(59,88),(60,81),(61,82),(62,83),(63,84),(64,85),(97,149),(98,150),(99,151),(100,152),(101,145),(102,146),(103,147),(104,148),(105,129),(106,130),(107,131),(108,132),(109,133),(110,134),(111,135),(112,136),(113,137),(114,138),(115,139),(116,140),(117,141),(118,142),(119,143),(120,144),(121,154),(122,155),(123,156),(124,157),(125,158),(126,159),(127,160),(128,153)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(2,26),(3,7),(4,32),(6,30),(8,28),(9,68),(10,14),(11,66),(13,72),(15,70),(17,76),(18,22),(19,74),(21,80),(23,78),(25,29),(33,37),(34,51),(36,49),(38,55),(40,53),(41,43),(42,90),(44,96),(45,47),(46,94),(48,92),(52,56),(57,88),(59,86),(60,64),(61,84),(63,82),(67,71),(75,79),(81,85),(89,91),(93,95),(97,149),(98,104),(99,147),(100,102),(101,145),(103,151),(105,133),(106,108),(107,131),(109,129),(110,112),(111,135),(113,141),(114,116),(115,139),(117,137),(118,120),(119,143),(121,127),(122,159),(123,125),(124,157),(126,155),(128,153),(130,132),(134,136),(138,140),(142,144),(146,152),(148,150),(154,160),(156,158)]])

95 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B5C5D8A8B8C8D10A···10L10M10N10O10P10Q10R10S10T20A···20P20Q···20AF20AG20AH20AI20AJ40A···40P
order1222224444444445555888810···10101010101010101020···2020···202020202040···40
size111148222244448111144441···1444488882···24···488884···4

95 irreducible representations

dim111111111111112222222244
type++++++++++
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10D4D4C4○D4C4○D8C5×D4C5×D4C5×C4○D4C5×C4○D8C8⋊C22C5×C8⋊C22
kernelC5×C23.19D4C5×C22⋊C8C5×D4⋊C4C5×C4.Q8C5×C2.D8C5×C42⋊C2C5×C4⋊D4C23.19D4C22⋊C8D4⋊C4C4.Q8C2.D8C42⋊C2C4⋊D4C2×C20C22×C10C20C10C2×C4C23C4C2C10C2
# reps11211114484444114444161614

Matrix representation of C5×C23.19D4 in GL4(𝔽41) generated by

10000
01000
00180
00018
,
0900
32000
00018
00160
,
1000
0100
00400
00040
,
40000
04000
0010
0001
,
122900
121200
0002
00210
,
1000
04000
0010
00040
G:=sub<GL(4,GF(41))| [10,0,0,0,0,10,0,0,0,0,18,0,0,0,0,18],[0,32,0,0,9,0,0,0,0,0,0,16,0,0,18,0],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[12,12,0,0,29,12,0,0,0,0,0,21,0,0,2,0],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40] >;

C5×C23.19D4 in GAP, Magma, Sage, TeX

C_5\times C_2^3._{19}D_4
% in TeX

G:=Group("C5xC2^3.19D4");
// GroupNames label

G:=SmallGroup(320,983);
// by ID

G=gap.SmallGroup(320,983);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1128,1766,226,10085,2539,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*d*e^3>;
// generators/relations

׿
×
𝔽